Macroscopic properties of carbon nanotubes from molecular-mechanics simulations
نویسنده
چکیده
Results of molecular-mechanics simulations of axial and torsional deformations of a single wall carbon nanotube are used to find Young’s modulus, the shear modulus, and the wall thickness of an equivalent continuum tube made of a linear elastic isotropic material. These values are used to compare the response of the continuum tube in bending and buckling with that obtained from the molecular mechanics simulations. It is found that the strain energy of bending deformation computed from the Euler-Bernoulli beam theory matches well with that obtained from the molecular-mechanics simulations. The molecular-mechanics predictions of the critical strains for axial buckling and shell wall buckling do not match well with those derived from the Euler buckling formula and the Donnell shell theory.
منابع مشابه
Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملThe Molecular Mechanics Model of Carbon Allotropes
Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...
متن کاملStudy on interaction between carbon nanotubes (CNTs) as nano carrier for loading and delivery of Methotrexate
The Methotrexate delivery by carbon nanotubes (CNTs) and the structural changes of drugcombination upon the carbon nanotubes and bio thermodynamic of the drug have been studied by molecularcomputational methods. Computational molecular methods have been fulfilled by molecular mechanics methods with four force field, and semi empirical with all methods. We investigate different param...
متن کاملComputational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites
Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...
متن کاملStudy of Aspect Ratio Effect on Mechanical Properties Polymer/NanoComposite
Carbon nanotubes (CNTs) demonstrate unusually high stiffness, strength and resilience, and are therefore an ideal reinforcing material for nanocomposites. However, much work has to be done before the potentials of CNT-based composites can be fully realized. Evaluating the effective material properties of such nanoscale materials is a very difficult tasks. Simulations using molecular dynamics ...
متن کامل